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Abstract

Accurate measurement of facial sexual dimorphism is useful to understanding facial anatomy and specifically

how faces influence, and have been influenced by, sexual selection. An important facial aspect is the display of

bilateral symmetry, invoking the need to investigate aspects of symmetry and asymmetry separately when

examining facial shape. Previous studies typically employed landmarks that provided only a sparse facial repre-

sentation, where different landmark choices could lead to contrasting outcomes. Furthermore, sexual dimor-

phism is only tested as a difference of sample means, which is statistically the same as a difference in

population location only. Within the framework of geometric morphometrics, we partition facial shape, repre-

sented in a spatially dense way, into patterns of symmetry and asymmetry, following a two-factor ANOVA design.

Subsequently, we investigate sexual dimorphism in symmetry and asymmetry patterns separately, and on multi-

ple aspects, by examining (i) population location differences as well as differences in population variance-

covariance; (ii) scale; and (iii) orientation. One important challenge in this approach is the proportionally high

number of variables to observations necessitating the implementation of permutational and computationally

feasible statistics. In a sample of gender-matched young adults (18–25 years) with self-reported European ances-

try, we found greater variation in male faces than in women for all measurements. Statistically significant

sexual dimorphism was found for the aspect of location in both symmetry and asymmetry (directional asymme-

try), for the aspect of scale only in asymmetry (magnitude of fluctuating asymmetry) and, in contrast, for the

aspect of orientation only in symmetry. Interesting interplays with hypotheses in evolutionary and developmen-

tal biology were observed, such as the selective nature of the force underpinning sexual dimorphism and the

genetic independence of the structural patterns of fluctuating asymmetry. Additionally, insights into growth pat-

terns of the soft tissue envelope of the face and underlying skull structure can also be obtained from the results.
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Introduction

The face is a biological billboard of our identity, underly-

ing genes and environmental exposures. For example, face

recognition is a specialized human ability and a widely

accepted identification and authentication method (Aeria

et al. 2010; Smeets et al. 2010, 2011a; Hill et al. 2011).

Forensic craniofacial reconstruction (Claes et al. 2010b;

Wilkinson, 2010) is a technique focused on identification

of the deceased which has its foundation in knowledge of

facial anatomy. Also, numerous studies indicate relation-

ships between facial characteristics and both subjective

preference in mate choice (Burris et al. 2011) and

attractiveness (Penton-Voak et al. 2001). Two facial

morphological characteristics in particular, symmetry and

masculinity ⁄ femininity, are often regarded as indicators of

underlying genetic quality and are used in testing hypoth-

eses related the sexual selection of ‘good-genes’ (Gangestad

& Thornhill, 2003; Koehler et al. 2004; Burris et al.

2011).

Bilateral symmetry of the face is defined with respect to

reflection or mirroring across the midsagittal plane

(Mardia et al. 2000). During vertebrate development,

imbalances in growth inevitably result in a degree of bilat-

eral asymmetry (Hamada et al. 2002). Although departure

from symmetry is a property of the individual, patterns of

asymmetry are studied at the level of the population and

can be grouped into three categories (Palmer & Strobeck,

1986; Palmer, 1994): (i) directional asymmetry (DA), repre-

senting the consistent greater development of characteris-

tics in a population on one side of the body relative to

the other; (ii) antisymmetry (AS), where the greater devel-

opment is not consistently biased to one side only but

occurs on both sides with approximately equal frequency;

and (iii) fluctuating asymmetry (FA), resulting in the inabil-

ity of a characteristic to develop in a pre-determined way

(Van Valen, 1962). Depending on the biological question

at hand, the focus might be either on symmetry or on

one of the three types of asymmetry. For example, if

developmental instability is of interest, fluctuating asym-

metry is likely to be most informative (Van Dongen &

Gangestad, 2011). Therefore, a proper decomposition of

facial shape into patterns of symmetry and asymmetry is

required. We start from a technique grounded in geomet-

ric morphometrics (Klingenberg & McIntyre, 1998; Mardia

et al. 2000; Klingenberg et al. 2002), which focuses on the

coordinates of landmarks and the geometric information

about their relative positions (Adams et al. 2004;

Mitteroecker & Gunz, 2009).

Sexual dimorphism implies sex interactions in patterns

of underlying gene expression and function resulting in

phenotypic differences between the sexes. Ultimately, sex-

ually differentiated patterns of gene expression result

from different selection pressures operating on the two

sexes, likely including mechanisms of sexual selection

(Badyaev et al. 2000), including opposite-sex mate choice

and same-sex contest competition (Puts, 2010). Given the

localized presentation of facial sexual dimorphism, it

seems logical that measures of facial masculinity or femi-

ninity are calibrated against the observed levels of sexual

dimorphism in faces (Scott et al. 2010). Sex differences

can exist both in facial symmetry and asymmetry (Ferrario

et al. 1993) and therefore their respective analyses should

preferably be separated.

Previous studies of sexual dimorphism in 3D faces have

been limited by at least one of the following three fac-

tors. First, they often rely upon the use of anatomical

landmarks but, owing to the lack of anatomically dis-

crete features in many regions of the face, these land-

marks provide only a sparse representation, whereby

salient features of the facial form are overlooked (Tho-

mas, 2005). The demand to detect, quantify and visualize

differences in discrete regions of the face requires more

complete facial representations. Furthermore, and more

importantly, different choices in landmarks can lead to

conflicting results. Secondly, faces display bilateral sym-

metry, therefore invoking the need to investigate aspects

of symmetry and asymmetry separately when examining

facial shape. Thirdly, sexual dimorphism is often

expressed as a difference between sample means only,

which is statistically the same as a difference in popula-

tion location. In this work and in contrast to other stud-

ies on sexual dimorphism in faces, spatially dense

sampled facial shape is used and decomposed into com-

ponents of symmetry and asymmetry (Klingenberg &

McIntyre, 1998; Mardia et al. 2000; Klingenberg et al.

2002). Hence, it provides detail on the obvious as well

as the more subtle differences and is independent of a

potential ‘facial perception bias’ (i.e. concentration of

landmarks on perceptually salient features of the face).

Subsequently, we examine sexual dimorphism in both

patterns of symmetry and asymmetry separately and on

multiple aspects, by also examining the variance-covari-

ance scale (overall dispersion) and orientation (structural)

besides location (central tendency) differences only. In

this setup, the number of variables due to the spatially

dense data is not only high but also exceeds the num-

ber of observations. This poses challenges in formulating

statistical models with appropriate distributional assump-

tions and with realistic variance-covariance structures that

account for the morphometric characteristics of the data

(Bock & Bowman, 2006). Therefore, as suggested in the

original work on bilateral symmetry of Mardia et al.

(2000), we turn to permutational statistics, which are

frequently considered to be non-parametric statistics

(Hammer & Harper, 2006).

Materials and methods

A flow diagram of the complete methods is depicted in Fig. 1.
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Sampling, facial mapping and Procrustes

superimposition

We selected one sample of 98 males and one of 98 females, all

with self-reported European ancestry and aged between 18 and

25 years, with an average of 20 years, living in Perth, Western

Australia, from the dataset of 3D facial images previously used

in Claes et al. (2011). With pooled samples, the following map-

ping and alignment was performed. First, an anthropometric

mask was non-rigidly mapped onto the original 3D images and

their reflections (Claes, 2007; Claes et al. 2011, 2012a), which

were constructed simply by changing the sign of the x-coordi-

nate (Klingenberg & McIntyre, 1998; Mardia et al. 2000). This

established homologous spatially dense quasi-landmark configu-

rations for all original and reflected 3D images (Claes et al.

2011). Note that, by homologous, we mean that each quasi-

landmark occupies the same position on the face relative to all

other quasi-landmarks. Subsequently, following Mardia et al.

(2000), a generalized Procrustes superimposition (Rohlf & Slice,

1990), eliminating differences in position, orientation and scale

of both original and reflected configurations combined, was

performed. This constructed a tangent space of the Kendall

shape space centred on the overall consensus configuration

(Dryden & Mardia, 1998). Procrustes shape coordinates, repre-

senting the shape of an object (Mitteroecker & Gunz, 2009),

were obtained for all 3D faces and their reflections. In the tan-

gent space, the Euclidean distance between two configurations

of Procrustes coordinates is known as the Procrustes distance

and serves as a measure of shape difference or dissimilarity (Mit-

teroecker & Gunz, 2009).

After Procrustes superimposition, the overall consensus config-

uration is perfectly symmetrical and a single shape can be

decomposed into its asymmetric and its bilaterally symmetric

part (Mardia et al. 2000). Indeed, the average of an original and

its reflected configuration constitutes the symmetric component,

while the difference between both configurations constitutes

the asymmetric component (Klingenberg et al. 2002; Kimmerle

& Jantz, 2005). From here on, the male and female cohorts were

treated separately as samples from different populations.

Partitioning of facial shape variation

A partitioning of variation in these male and female population

samples performed with the commonly used two-factor ANOVA

design with individuals (rows) and reflections (columns) as main

effects (Klingenberg et al. 2002). The original decomposition of

shape variation into components of symmetry and of asymmetry

with an associated formal test for directional asymmetry by

Mardia et al. (2000) was extended by Klingenberg et al. (2002)

to encompass the full two-factor ANOVA design including fluctu-

ating asymmetry and measurement error (Palmer & Strobeck,

1986). This two-factor ANOVA design partitions the variation in

shape centred on the overall consensus configuration into com-

ponents due to individuals, reflections, individual · reflection

interactions, and measurement error. Variation among symme-

Fig. 1 Method work-flow (AMMI, additive main model and multiplicative interaction).
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try components, corrected for the effects of asymmetry, is

obtained by the main effect of individuals. Directional asymme-

try (DA) corresponds to the main effect of reflections and fluc-

tuating asymmetry (FA) is ascertained by the interaction term

(individual · reflection). Finally, measurement error is typically

computed from the variation among replicate measurements

(multiple quasi-landmark configurations of the same individual,

which are grouped in a single cell). However, replicate measure-

ments were missing, as only a single facial mapping was per-

formed. This was dealt with in two different ways: Noise

Injection (or simulating technical replication error) and Additive

Main & Multiplicative Interaction (AMMI) modelling. Note that

biological replication error (imaging the same person multiple

times) was not considered here but would presumably be

greater than the measurement error, as individuals may show

variable effects dependent on their facial tone or expression.

Also note that antisymmetry was not measured using this

framework and was not addressed in this study.

Noise injection

Inspired by the study of Kimmerle & Jantz (2005), in which

repeated measures were only available for a subset of the entire

sample, we assumed that the deviations between two repeated

measures were consistent for the entire sample. In a separate

study (data not shown), a so-called repeatability error of the

mapping process was estimated from 10 faces mapped each

with 10 different initializations. A single initialization started

from five manually indicated landmarks (the centres of right

and left eye, nose tip, and right and left mouth corner) (Claes

et al. 2011). A quasi-landmark repeatability error with 0.2 mm

standard deviation [0.002 (dimension less) after size normaliza-

tion] was measured from a landmark indication error of 1 mm

standard deviation. Further testing indicated that the 0.2 mm

repeatability error was actually independent of the landmark

indication error. This does not come as a surprise as the map-

ping process was designed to be as invariant as possible to the

initial landmark indication error. Instead, the repeatability error

was attributed to an algorithmic parameter (set equal to

0.1 mm) which reflects evaluation accuracy of implicit functions

needed in the mapping (chapter 3: Claes, 2007). From this result,

random normal distributed noise with zero mean and 0.002

standard deviation was injected into the aligned and scaled ori-

ginal and reflected configurations, generating three randomly

perturbed replicate measurements of each, needed for the

traditional two-factor ANOVA partitioning.

The first partitioning, with injected replicate measurements,

was performed under an isotropic model assumption providing

a useful measure of the magnitude (but not the direction) of

the effects (Klingenberg & McIntyre, 1998). This model pre-

sumed independently (uncorrelated), identically (equal amount)

and isotropic (same for each direction) distributed variation

around each landmark. Therefore it was possible to simply add

up the sums of squares (SS) for the different effects across the

coordinates of all landmarks and to divide by the appropriate

degrees of freedom to obtain an overall analysis (Klingenberg &

McIntyre, 1998). The effects can also be analysed on the level of

landmarks by adding the SS over the coordinates per landmark

only and adjusting the degrees of freedom accordingly. Compu-

tationally, this partitioning requires a separate two-way ANOVA

on each coordinate following a simple univariate setting, which

is time-consuming but nevertheless feasible when working with

spatially dense configurations. Statistical significance was

assessed using permutation tests with 1000 randomly permuted

observations (Klingenberg & McIntyre, 1998; Anderson, 2001a).

The second partitioning, with injected replicate measure-

ments, was performed following a multivariate setting. How-

ever, the known multivariate extension using MANOVA

(Klingenberg et al. 2002) was computationally impracticable

owing to the explicit construction and inversion of variance-

covariance matrices. With the quasi-landmarks used in this study

these matrices would be large (� 30 000 · 30 000) and of low

(incomplete) rank (98-1) because the number of variables is high

and exceeds the number of observations, implying over-dimen-

sioned spaces and loss of power (Brombin & Salmaso, 2009).

Therefore, a distance-based non-parametric multivariate analysis

of variance (NPMANOVA) was employed (Anderson, 2001b),

which does not suffer from the same drawbacks nor does it

assume multivariate normality. The dissimilarity measure used

was the Procrustes distance. Statistical significance was assessed

using the same permutation strategies as before with 1000 runs

(Anderson, 2001a).

Additive main and multiplicative interaction

AMMI models are an alternative way to deal with only a single

observation per cell (Dias & Krzanowski, 2006; Corsten & Van

Eijnsbergen, 1972). The underlying idea is to model both the

main effects of individuals and reflections as additive (as in the

classical ANOVA model) and the residual term by a set of multipli-

cative components plus some residual error. To estimate the

unknown parameters in the AMMI model, one uses the

row ⁄ column means for the main effects and then performs a

singular value decomposition of the residual for the multiplica-

tive interaction parameters (Dias & Krzanowski, 2006). Because

the residual matrix is a mixture of interactions and measure-

ment error, only a reduced set of the higher (according to the

accompanying singular value) components explains true pat-

terns of interaction. The other, lower components mainly model

measurement error and are therefore dropped. The key objec-

tive is to find a good number of components to retain.

The AMMI framework was a practical foundation when deal-

ing with spatially dense data and was capable of partitioning

and visualizing multivariate patterns of both symmetry and

asymmetry as follows. (i) The row means were the same as the

symmetry components of the individuals and coded for patterns

of facial symmetry that were then extracted and visualized

using principal component (PC) analysis (PCA). Note that this is

similar to the use of PCA to display patterns of (symmetrical)

individual variation, corrected for asymmetry, in the work of

Klingenberg et al. (2002). In Appendix 1 a simple strategy for

PCA on a rank deficient variance-covariance matrix is detailed,

which was used extensively in the methods. The number of sig-

nificant PCs was determined using parallel analysis (PA) (Krank-

lin et al. 1995), which statistically defined spurious PCs against

PCs of equally dimensioned but random and uncorrelated data.

(ii) The difference in column means coded for directional asym-

metry. This was the same as a difference in sample mean of the

original and reflected configurations treated as different popu-

lations. Significance assessment of DA was therefore done

following the population location test described in the next

section. Note that this is identical to the permutational version

of the formal test for bilateral symmetry given by Mardia et al.

(2000). (iii) Pairwise differences taken between columns were

the same as the asymmetry components of the individuals and

coded for patterns of facial asymmetry. These were again
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extracted with PCA that first included a centring (on the aver-

age) of the differences, which was essentially equal to subtract-

ing the DA from each of the individual asymmetry components.

In other words, by taking the difference of the columns and

centring the data subsequently, the main row and column

effects were removed and residuals contain interactions and

measurement errors only. For visualization purposes the overall

consensus configuration, which was symmetric (Mardia et al.

2000), was added back to the residuals. Finally, PA was used as

well to extract the number of significant PCs, truly reflecting

patterns of interaction or fluctuating asymmetry in this study.

Note that, this is similar to the use of PCA to display patterns of

fluctuating asymmetry in the work of Mardia et al. (2000) and

Klingenberg et al. (2002), with the difference in mean-centring

the data and the way FA is separated from measurement noise,

respectively.

Statistical inferences on population location,

variance-covariance scale and orientation

Sexual dimorphism in patterns of facial symmetry and asymme-

try separately (for which suitable quasi-landmark configurations

were obtained from the AMMI partitioning of variance) was

assessed on multiple aspects, as illustrated schematically in

Fig. 2: population location (central tendency), variance-covari-

ance scale (dispersion) and orientation (structure). Traditional

statistics to test each of these aspects among different groups

were not applicable. Even ordination techniques such as linear

discriminant analysis could not be applied because they also

require full rank variance-covariance matrices (Mitteroecker &

Bookstein, 2011). Therefore, alternative distance-based permuta-

tional approaches were employed.

The key to the problem was simply to establish an appropri-

ate measure of dissimilarity or distance between observations

for each of the three aspects to be tested. Then a single but

non-pivotal D(istance)-statistic between different groups could

be defined as illustrated schematically in Fig. 3A. Employing the

work on NPMANOVA of Anderson (Anderson, 2001b; McArdle &

Anderson, 2001), allowing for direct additive partitioning of var-

iation for complex models, a related but pivotal F-statistic could

also be defined by measuring and partitioning dissimilarity

between all pairs of individual observations as depicted in

Fig. 3B. Significance was assessed under permutation where the

original male and female cohorts generated the observed D-

and F-statistics. Subsequently, male and female faces were per-

muted across groups and both the D- and F-statistics under per-

mutation were tested against the observed values. This was

repeated 1000 times and the number of times the permutated

values were bigger or equal to the observed values divided by

the total number of permutations, generated a P-value.

Location

The first test assessed the difference in central tendency, which

generally measures population divergence and in this case more

specifically the degree of sexual dimorphism (Fig. 2A). An obser-

vation for this test was defined as a single configuration of Pro-

crustes coordinates (either the symmetry or asymmetry

component as explained previously). The D-statistic was simply

the Euclidean distance between the sample means of each

group. The F-statistic was an exact application of Anderson

(2001b) using the Euclidean distance between all pairs of con-

figurations. Note that this is also equivalent to the permuta-

tional version of the two independent-sample Goodall’s F-test,

which is well known in shape analysis (Goodall, 1991; Bookstein,

1997b). Also note that the test for DA under the AMMI model

followed an analogous difference in location test between ori-

ginal and reflected configurations as separate populations,

which was then identical to the permutational version of the

formal test for bilateral symmetry given by Mardia et al. (2000).

Variance-covariance scale

The second test assessed the difference in overall dispersion,

which measures differences in the magnitude of variance or the

stability of a population around its consensus configuration

(Fig. 2b). Following Anderson (2006), we measured the Euclid-

ean distance between each configuration of Procrustes coordi-

nates and its group consensus as a residual, which was seen as a

single (univariate) observation. The D-statistic was the absolute

difference in average residual of both groups. The F-statistic

was an exact application of Anderson (2006).

Variance-covariance orientation

The third and last test assessed the difference in covariance

structure, which measures differences in patterns or directions

of variance (Fig. 2C). A single observation for this test was the

subspace spanned by a sample of quasi-landmark configurations

(not just a single but a group of configurations). Given a sample

A B C

Fig. 2 Multiple aspect analysis. (A) Two populations differing in location only. Feature to focus on is the sample mean or centroid. (B) Two

populations differing in variance-covariance scale only. The feature to focus on is the sample dispersion based on distances from the centroid. (C)

Two populations differing in variance-covariance orientation only. The feature to focus on is the sample subspace, represented using eigenvectors

and the principal angles between them.
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of configurations, a proper representation of the subspace was

the unit eigenvectors or PCs of the sample covariance matrix

(Appendix 1). Subsequently, a set of distances fDk jk ¼ 1; . . . ;Kg
between two subspaces was defined using the projection metric

(Hamm & Lee, 2008):

Dk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k �

Xk
i¼1

ðcos hiÞ2
vuut

Here, hi for fi ¼ 1; . . . ;Kg are the critical angles (Krzanowski,

1979) also known as principal angles (Knyazev & Argentati,

2002). These angles combine PCs in a pairwise fashion from

both subspaces in decreasing similarity or increasing angle

value. In other words, h1 is the smallest angle between all pairs

of PCs in the first and second subspace. h2 is the second smallest

angle between all pairs of PCs except the ones already com-

bined by h1 and so on. Note that the cosine of these angles is

also known as the canonical correlations (Hamm & Lee, 2008).

Based on the work of Krzanowski (1993), a D-statistic-based

test was then obtained as follows: (i) Appropriate symmetry

and asymmetry subspaces for both male and female cohorts

treated separately were derived from the previously AMMI par-

titioning of variance. (ii) Only a limited number of K PCs were

retained based on the outcome of the Parallel Analysis. This

was to ensure that enough relevant variation was captured in

the subspace representation without incorporating too much

irrelevant variation. (iii) A set of K distances was computed by

incrementally augmenting the number of principal angles used

in the projection metric from 1 to K. (iv) Permutation was per-

formed on centered data to avoid the contamination of

between variance-covariance (difference in sample location)

(Shipley, 2000) and steps (i)–(iii) were repeated with the same

number of K PCs.

As in the previous two tests, a straightforward extension to

an F-statistic would be possible but requires a multiple, non-

overlapping sampling of male and female cohorts, which is

quite data hungry and often not practicable. Instead, an inter-

mediate but computationally more demanding solution was

presented: 50 bootstrapped samples with replacement were

generated for both the male and female cohort separately.

Hence, 50 observations per group were given and distances

between all pairs of observations generated the observed F-sta-

tistic (Anderson, 2001b). Permutation was performed across the

original male and female cohorts on centered data as for the D-

statistic and the bootstrapping of 50 observations per group

was repeated. Note that, the effect of using bootstrapping is an

underestimation of the actual within-group variance because of

overlap between different bootstrapped samples. However,

some effect of sampling differences is still taken into account

compared with the D-statistic, making this F-statistic a sort of

‘semi-pivotal’ statistic.

All statistical routines were implemented in MATLAB
TM 2011a

and are available on request by email to the corresponding

author.

Results

Partitioning of facial shape variation

The two-factor ANOVA partitioning of male and female facial

shape based on injected noise is given in Figs 4 and 5,

respectively. The decomposition of shape into symmetry,

DA and FA was reported according to Klingenberg & McIn-

tyre (1998). The figures read like two-factor ANOVA tables,

with the sums of squares and degrees of freedom omitted

for purposes of clarity and owing to the redundancy in

information. The mean squares (MS) reflect absolute effect

magnitude, whereas the F-ratios reflect relative magnitude

or effect strength. In other words, an effect can be large in

absolute magnitude (MS), but can be unimportant (F-ratio)

in relative terms. Overall, the main effects of individuals

and reflections and the interaction term, in both males and

females separately, were highly significant (P < 0.001)

according to both the isotropic and the NPMANOVA.

Numerically, all the male variations (symmetric, asymmetric,

and interactions) were larger than the female variations.

The variation in individuals, consisting of symmetric varia-

tion, was mainly located in the chin, mouth, nose, cheek

and forehead, with some visual differences between males

and females, especially on the forehead and mouth. This

indicated that variation amongst individuals was predomi-

nantly due to differences in their facial profiles that varied

from prognathic (concave profile) through orthognathic

(straight profile) to retrognathic (convex profile) (Enlow &

Hans, 1996). The significance of this, however, which was

tested against the interaction component as the error term,

is not really meaningful, as noted by Klingenberg et al.

A

B

Fig. 3 (A) A non-pivotal D-statistic is computed as a single distance

between both groups of observations. (B) A pivotal F-statistic is

computed by comparing the within pair-wise distances (solid lines),

against the between pair-wise distances (dotted lines) of observations.
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(2002). For both males and females, specific areas in the

face displayed significant DA, which was coded in the main

effect of reflections. An interesting exclusion from DA was

the nose. The pattern of DA between males and females

was visually different. FA, which was measured in the inter-

action term, significantly affected the complete face, but

bigger interactions were mainly located in specific facial

features, such as the nose, for both males and females. The

difference between sexes observed was mostly a difference

in magnitude only. In other words, although males showed

more FA throughout the regions affected, females also

showed FA in these same parts of the face. Finally, as

expected, the error term visually reflected the pattern of

the noise injected.

Following the AMMI framework, for females and males

separately, the consensus for original and reflected config-

urations combined, which is the (symmetric) group aver-

age, is depicted in Fig. 6A and C, respectively. DA, which

was coded as the difference in column means, was found

to be highly significant (Table 1, top lines) and the pattern

of DA was similar to the one obtained in Figs 4 and 5. DA

was amplified five times for better visibility and is shown

in Fig. 6B and E for females and males, respectively. The

PA results for the PCA modelling of patterns of symmetry

and FA are given in Table 2 and the first two PCs for

males and females are depicted separately in Fig. 7. The

AMMI results are essentially an alternative way of report-

ing on the decomposition of shape into symmetry, DA

and FA. In other words, although constructed and perhaps

shown differently, the results should be consistent with

the results given in Figs 4 and 5. For example, the AMMI

results indeed confirm that differences in facial profile

from prognathic (concave profile) to retrognathic (convex

profile) play an important role in the patterns of symmet-

ric shape variation. Additionally, for the patterns of FA, as

before, facial features played an important role. More

importantly, however, an interesting interplay of different

facial parts was observed. For example, for both males

and females the first PC of FA displayed an asymmetry

in the chin with an opposite, perhaps compensating,

asymmetry in the upper part of the face. For both pat-

terns of symmetry and FA in both males and females the

Fig. 4 Two-factor ANOVA partitioning of male facial shape variation following an isotropic model (IM) and a distance-based NPMANOVA (D).

Throughout the table values are coded as IM ⁄D. P1000 Column: P values using 1000 permutations with * and light green P < 0.05; ** and

yellow P < 0.001; dark green not significant (P ‡ 0.05). MS (mean square) is the sum of squares divided by the appropriate degrees of freedom,

reflecting the magnitude of the effect. F (F-ratio) is the MS divided by an appropriate error MS, reflecting the relative magnitude or strength of

the effect. The interaction term is used as error term for the main effects of individuals and sides and the actual error term is used for the

interaction term.
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number of significant PCs was relatively small (between 11

and 13 significant PCs), but they explained at least 85% of

the total variance.

Sexual dimorphism in patterns of facial symmetry

and asymmetry

The main purpose of the subsequent results is to report on

gender differences, significant or otherwise. The statistical

testing for sexual dimorphism in patterns of facial symmetry

and asymmetry treated separately is given in Table 1. Over-

all, the findings from the D- and F-statistics were not differ-

ent. On the aspect of sample location, sexual dimorphism

was found to be strongly significant for the average compo-

nent of symmetry (P < 0.001) and significant for the

average component of asymmetry (DA) (P < 0.05). Mean

male and female differences are illustrated in Fig. 6E and F,

and were mainly located on the chin, brow ridge and

sub-orbital-zygomatic-maxillary (upper cheek) region. The

differences measured are consistent with the previously

observed differences in main effects across Figs 4 and 5. On

the aspect of sample variance-covariance scale, the magni-

tude of variation in facial symmetry of males (Disper-

sion = 3.06) was not significantly different from that of

females (Dispersion = 2.95). In contrast, the magnitude of

variation in facial asymmetry was significantly (P < 0.05) lar-

ger in males (Dispersion = 1.66) than in females (Disper-

sion = 1.47). This confirmed the observed difference in FA

magnitude from Figs 4 and 5. The actual distributions of

the dispersions (as distances to sample means) for both mal-

es ⁄ females and symmetry ⁄asymmetry are shown in Fig. 8.

Similarity and dissimilarity in distribution are observed for

the components of symmetry and asymmetry, respectively.

Finally, on the level of sample variance-covariance orien-

tation, the structure of facial symmetry variation was signifi-

cantly different between males and females and showed

only a few overlapping directions (results for smallest

number of principal angles). By contrast, no significant

difference was observed in the patterns of FA. Fifteen PCs

were used, which equalled the maximum number of signifi-

cant PCs from the PA, given in Table 2, plus two to ensure

that all the important but not too many PCs were used to

compute the principal angles. A visual and more complete

summary of the findings on the level of sample variance-

Fig. 5 Two-factor ANOVA partitioning of female facial shape variation following an isotropic model (IM) and a distance-based NPMANOVA.

Throughout the table, values are coded as IM ⁄D. P1000 Column: P values using 1000 permutations with * and light green P < 0.05; ** and

yellow P < 0.001; dark green not significant (P ‡ 0.05). MS (mean square) is the sum of squares divided by the appropriate degrees of freedom,

reflecting the magnitude of the effect. F (F-ratio) is the MS divided by an appropriate error MS, reflecting the relative magnitude or strength of

the effect. The interaction term is used as error term for the main effects of individuals and sides and the actual error term is used for the

interaction term.
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covariance orientation is given in Fig. 9. In these displays it

is obvious that the observed D- and F-statistic were at the

top end (significant) of the generated null distributions (by

permutation) for the patterns of symmetry, whereas they

were obscured (non-significant) in the null distributions for

the patterns of asymmetry.

Discussion

The face is the most identity-coding part of the human

body (Smeets et al. 2010) and clearly displays bilateral sym-

metry. When symmetry is taken into account, improvements

of state-of-the-art face recognition techniques are possible

(Smeets et al. 2011b). Facial asymmetries are also a feature

of normal (and abnormal) growth and development (Ferra-

rio et al. 1995; Ercan et al. 2008; Claes et al. 2011) and are

an important factor in mate selection (Baudouin & Tibergh-

ien, 2004), with some asymmetry features accepted as a trait

of beauty (Zaidel & Cohen, 2005). Therefore, a study on

facial shape variation and anatomy needs to focus on pat-

terns of both symmetry and asymmetry for a full under-

standing of structural variation.

Three-dimensional scanning and geometric morphomet-

rics are providing the means to establish phenotypic investi-

gations (Baynam et al. 2011, 2012) and are used in this

work to analyse sexual dimorphism in 3D facial shape. We

start from previous and related work (Claes et al. 2011)

using spatially dense quasi-landmark configurations. How-

ever, the challenge is to deal with a large number of vari-

ables that typically exceeds the number of observations,

which is not uncommon in modern morphometrics

(Mitteroecker & Gunz, 2009). This generates rank-deficient

variance-covariance matrices, excluding the use of statistical

techniques relying on the explicit construction and the full

rank thereof. Furthermore, traditional multivariate ana-

logues to powerful univariate techniques are often too

stringent in their assumptions (Anderson, 2001b, 2006).

Therefore, statistical inference techniques making use of

measures of dissimilarity or distances and permutation are

employed. Both a simple D-statistic and a slightly more com-

plicated F-statistic are given to test multiple aspects

between population samples. The advantage of the F-statis-

tic compared with the D-statistic is the ability to separate

different sources of variation and to work with multiple

groups simultaneously, as in the classical ANOVA design

(Anderson, 2001b; Anderson & Millar, 2004), which is

typically employed in geometric morphometric-based

studies (Viscosi & Cardini, 2011). In other words, with the

NPMANOVA framework of Anderson (2001b) it was possi-

ble to make inferences about all three population aspects

through the appropriate definition of a distance. Further-

more, in the case of testing population location differences,

the results are identical to both Goodall’s F-test under

permutation (Goodall, 1991; Bookstein, 1997b) and the per-

mutational version of the formal test for Directional asym-

metry of Mardia et al. (2000). A more technically oriented

discussion on the assumptions made and techniques used is

given in Appendix 2. Here, we focus the discussion on the

results and their biological meaning only.

The results illustrate interplay with some long-standing

hypotheses in developmental and evolutionary biology.

From the investigation on facial symmetry, and more partic-

ularly the differences in sample location, a substantial

degree of sexual dimorphism is detected and measured.

This suggests the influence of sexual selection on human

faces (Badyaev et al. 2000; Puts, 2010). Importantly, from

the analysis of the variance-covariance orientation differ-

ences, which were significant, sexual dimorphism in facial

appearance is tracked back to selective forces (Herler et al.

2010), which cause a change in phenotypic variance-covari-

ance direction in contrast to pure genetic drift (Badyaev &

Hill, 2000). In other words, our results are consistent with

the assumption that sexual dimorphism is a result of a selec-

tive force, for which sexual selection is the most obvious

candidate. The lack of variance-covariance scale difference

might be surprising because of a hypothesis stating that

male faces have an extended period of growth, therefore

forming more prominent facial features, whereas females

have an attenuated growth, retaining more juvenile charac-

teristics. Women’s faces are on average more neotenous

A B

C D

E F

Fig. 6 Sexual dimorphism on the aspect of sample location for the

component of symmetry (E) and asymmetry (F). (A) Female symmetric

group average. (B) Female directional asymmetry, differences between

mean original and reflected configurations amplified five times and

visualized onto (A). (A) Male symmetric group average. (B) Male

directional asymmetry, differences between mean original and

reflected configurations amplified five times and visualized onto (A).
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relative to men’s faces (Montagu, 1989), and more neote-

nized female faces are found to be more attractive to men

(Jones, 1995). In other words, owing to the more prominent

growth of male faces, a higher overall dispersion in men

might be expected. However, considering the relatively

young adult age range of our participants, no particular

strong growth magnitude differences may have manifested

yet, which would be consistent with the absence of a statis-

tically significant difference in variance-covariance scale.

The young age of the participants can be perceptually

noticed in the symmetric group averages depicted in Fig. 6A

and C. It would be interesting to test changes and differ-

ences in dispersion as a function of age through the incor-

poration of older and younger subjects. Alternatively, the

measurement of variance-covariance scale could also be an

indication that persistent stabilizing selection has resulted

in a degree of canalization of facial morphology, with the

result that no difference is observed between sexes.

The asymmetry outcomes are intriguingly different and,

again, interplay with long-standing hypotheses is observed.

For example, a stronger effect of DA is measured in the

males, and this difference could be considered significant

[although it should be interpreted with caution due to the

significant difference in variance-covariance scale (Appendix

2)]. DA is typically argued to be genetically based (Kimmerle

& Jantz, 2005). An increase in DA has also been associated

with various disorders that impact on craniofacial develop-

ment, such as in utero alcohol exposure (Klingenberg et al.

2010) and autism spectrum disorder (Hammond et al. 2008).

Additionally, a significantly higher level of FA (variance-

covariance scale) is observed in the male sample and FA is

considered a measure of developmental instability (Schaefer

et al. 2006b; Graham et al. 2010). Our investigation of sex-

ual dimorphism in facial asymmetry thus supports the

hypothesis that men experience greater developmental

instability and this observation may be consistent with the

longer life span in women (Kirkwood, 2010) and higher

prevalence of neurodevelopmental and craniofacial disor-

ders in males. One cause of this apparent greater level of

craniofacial developmental instability in males is the fact

that males are haploid for the X chromosome whereas

females are diploid. In other words, males are genetically

homozygous for the � 1500 X-linked genes and so will

express X-linked recessive diseases as if they were dominant.

Thus, men experience an increased prevalence of overt or

Mendelian genetic disease relative to women. That the

effect is ultimately the result of hemizygosity and not sex

per se is made clear by studies of interspecific crosses where

the weaker sex is generally the hemizygous sex, a phenom-

enon called Haldane’s rule (Laurie, 1997). Genetic disease

can also result from interactions between separate loci, a

fact that might also lead to an increase in the rate of

genetic disease in males. Also interesting is that the direc-

tions of FA are not different between sexes (they share the

Table 1 Significance results on D- and F-statistics of sexual

dimorphism in sample location, scale and orientation for components

of symmetry and asymmetry separately

D-statistic P1000 F-statistic P1000

DA Males 0.44 0.000 0.87 0.000

Females 0.41 0.000 0.82 0.000

Sexual

dimorphism

in patterns

of facial

symmetry

Location 1.90 0.000 17.90 0.000

Scale 0.11 0.401 0.73 0.387

Orientation

1 : 1 : 15

principal

angles

0.06 0.163 169.76 0.059

0.12 0.253 162.80 0.106

0.17 0.250 159.66 0.035

0.24 0.043 149.71 0.028

0.31 0.034 140.53 0.029

0.37 0.046 130.21 0.036

0.45 0.024 120.13 0.043

0.54 0.020 111.57 0.034

0.63 0.030 103.42 0.027

0.76 0.010 96.83 0.017

0.87 0.019 90.03 0.013

1.00 0.097 82.62 0.004

1.25 0.006 74.04 0.001

1.52 0.002 61.08 0.000

1.81 0.002 41.75 0.000

Sexual

dimorphism

in patterns

of facial

asymmetry

Location 0.37 0.007 2.55 0.013

Scale 0.18 0.005 7.99 0.006

Orientation

1 : 1 : 15

principal

angles

0.09 0.960 182.60 0.744

0.15 0.799 184.17 0.358

0.22 0.397 172.33 0.180

0.28 0.443 159.90 0.098

0.37 0.419 155.10 0.113

0.45 0.586 145.42 0.161

0.55 0.584 135.33 0.149

0.64 0.818 124.17 0.148

0.76 0.663 113.97 0.130

0.90 0.607 103.74 0.127

1.06 0.517 91.04 0.192

1.26 0.464 76.32 0.342

1.48 0.525 60.09 0.518

1.76 0.447 44.63 0.587

2.02 0.423 32.51 0.571

DA, directional asymmetry.

Table 2 Parallel analysis (PA) results for symmetry and asymmetry

subspaces with percentage explained by the number of significant (PA

columns) or chosen (#PC columns) principal components for the

variance-covariance orientation test-setup.

PA % Expl #PC % Expl

Symmetry

Males 12 89 15 92

Females 13 92 15 93

Asymmetry

Males 13 85 15 87

Females 11 85 15 89
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same variance-covariance orientation). This observation

across distinct populations was also noted in Deleon (2007).

The fact that all participants in this study were sampled

from the same environmental location and socioeconomic

background implies that patterns of FA are indeed geneti-

cally independent and therefore can truly represent

developmental noise.

The patterns of FA, where interesting interactions of dif-

ferent facial parts are seen in the AMMI partitioning of vari-

ance, are noteworthy. The skull is the underlying

foundation of the soft-tissue envelope, which is the basis

assumption for craniofacial reconstruction (Claes et al.

2006, 2010a,b; Wilkinson, 2010). Therefore, insights into

growth patterns of both the face and the underlying skull

structure can be obtained from patterns of FA. For example,

the greatest degree of FA (PC1) was of corresponding but

opposite asymmetry in the upper mid face with a strongly

asymmetric chin point. This is suggestive of a lateral

displacement of the mandible followed by corresponding

contralateral asymmetry of the mid-face. This supports part-

counterpart adaptive response in the craniofacial skeleton

(Enlow, 1968). Noteworthy is that this pattern of asymmetry

is also seen in hemimandibular elongation anomalies,

where a condylar hyperplasia results in mandibular displace-

ment and severe facial asymmetry (Obwegeser & Makek,

1986; Walters et al., in press). A similar pattern was revealed

in a non-clinical population, which is suggestive of the

impact on asymmetry associated with minor growth discor-

dance in the mandibular condyles. However, not all condi-

tions that exhibit a condylar hyperplasia present with the

same pattern of asymmetry. For example, hemimandibular

hyperplasia (Obwegeser & Makek, 1986; Walters et al., in

press) is a condition that also includes condylar hyperplasia

where there is a contrasting pattern of mandibular displace-

ment in a more inferior and rotational vector about a mid-

line axis. This pattern of asymmetry is either less common in

subclinical cases or has less profound impact on facial sym-

metry variances. However, more data and analysis are

needed to investigate this phenomenon.

The analysis of sexual dimorphism presented, was

achieved by modelling patterns of symmetry and asymme-

try of facial shape separately on healthy subjects and in a

3D spatially dense manner that provides a complete repre-

sentation of the facial manifestations of this phenomena. A

comparison of our findings with related work is mainly lim-

ited to the results on the level of sample mean (location)

only (Fig. 6). In our study, the difference in symmetry com-

ponent of females (Fig. 6A) and males (Fig. 6C) displayed in

Fig. 6E, has an emphasis on the brow ridges, nose ridge,

eye sockets and orbits, chin and elevated cheekbones in

males compared with an emphasis of rounder cheek in

females. One of the first investigations on sexual dimor-

phism in human facial shape was performed using Euclid-

ean distance matrix analysis (EDMA) on 22 landmarks in 2D

images by Ferrario et al. (1993). They concluded that male

faces on average were wider, longer and more rectangular

in shape, which conforms to the results presented. Interest-

ingly, Ferrario et al. (1993) also noted that their sex differ-

ences were not equally distributed in the two antimeres.

They measured differences in both symmetry and asymme-

A B

C D

Fig. 7 The effects, a positive morph and a negative morph along the first two principal components in patterns of symmetry [(A) females, (B)

males], and asymmetry [(C) females, (D) males].
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try of facial shape simultaneously and therefore one com-

ponent can confound the analysis of the other. More

recently, Samal et al. (2007) performed a similar study using

29 landmarks and provided a list of features, significantly

discriminating between sexes, without further anatomical

feedback. Hennessy et al. (2002) achieved the most similar

study to the investigation presented here. They performed

a geometric morphometric analysis on 3D faces from a

similar population in background (Irish, Scottish, Welsh or

English compared with Australian of self-reported Euro-

pean descent), with the differences in using only a sparse

set of 24 landmarks, without the decomposition of shape

into components of symmetry and asymmetry, and looking

at the sample mean only. On visualization, to be compared

with Fig. 6A and C, Hennessy et al. (2002) described female

faces as wider and flatter with eyes more lateral, anterior

and further apart, nasal bridge more posterior, a smaller

nose, fuller lips and the chin more forward. Although most

of these differences are subtle, they can be noted in the

results depicted in Fig. 6A and C as well. More interestingly,

in a later study, Hennessy et al. (2005) expanded their analy-

sis onto pseudo-landmarks. The anatomical knowledge of

26 ‘true’ landmarks was roughly interpolated for points

in-between them (Hutton et al. 2003; Hammond et al.

2004), which provide a spatially dense description of facial

shape. Hennessy et al. (2005) illustrate that this ‘whole-face’

analysis reveals numerous additional aspects of facial shape

that remains undetected when using a (traditional) land-

mark-based approach, which is greatly supported by the

study presented. Their detected differences between sexes

are well described, presented like and are equal to the

results shown in Fig. 6A and c. However, some asymmetry is

noted in their measured pattern of sexual dimorphism,

because shape was not decomposed into component of

symmetry and asymmetry.

In contrast to sexual dimorphism in facial soft-tissue struc-

tures, much more work has been done on facial skeletal

structures (Uytterschaut, 1986). One of the four pillars of an

anthropological protocol, is the estimation of sex (Pretorius

et al. 2006; Kimmerle et al. 2008; Scholtz & Pretorius, 2010).

Therefore, regions of the cranium, e.g. where sexual dimor-

phism is most pronounced, are worth investigation for

determining sex from shape (Bigoni et al. 2010). A complete

overview would be outside the scope of the manuscript,

A B

C D

Fig. 8 Sexual dimorphism for the aspect of sample scale. Distribution of dispersions for the components of symmetry [(A) females, (B) males] and

asymmetry [(C) females, (D) males].
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but a recent study on sexual dimorphism in adult crania of

known sex belonging to people who lived during the first

half of the 20th century in Bohemia, was done using 3D

geometric morphometrics on 82 ecto-cranial landmarks and

39 semi-landmarks (Bookstein, 1997a; Andresen et al. 2000)

by Bigoni et al. (2010). The upper face was described as

lower and wider for males than for females. Males exhib-

ited a relatively flatter and more vertical upper face, which

is not seen in Fig. 6, and relatively wider and higher zygo-

matic arches, which is noted in Fig. 6. In contrast, females

had a higher forehead and face, which is seen in Fig. 6.

Furthermore, females expressed a more rounded orbit,

which is seen in Fig. 6 as well. Additional detailed differ-

ences in facial skeletal structures between sexes are given

but these were harder to relate to the facial soft-tissue

structures depicted in Fig. 6 and hence are not listed here.

It should be noted that patterns of sexual dimorphism

between different populations are not necessarily the same

(Kimmerle et al. 2008; Puts, 2010; Bastir et al. 2011) and it

would be interesting to expand the current study setup to

multiple populations.

Previous work on the measurement of asymmetry in

human faces also exists but is often limited to DA only,

without an explicit analysis of sexual dimorphism in facial

asymmetry. Again, some of the first studies were performed

by Ferrario et al. (1994, 1995). Using EDMA on 16 3D land-

marks, they found a significant DA for shape (not for size),

in both men and women separately, but numerically no

apparent sex differences were observed or tested explicitly

for significance. In contrast, a more recent study of Ercan

et al. (2008), similarly using EDMA but on 42 landmarks in

2D images, observed (but not tested for significance) a

higher number of asymmetric distances, suggesting a

higher level of DA, in females than in males. They also give

a discussion regarding the dominant part of the face (differ-

ence in size only, which is not addressed in our study), with

no real consensus emerging. In our study, significant DA is

also measured in both males and females but, in contrast, a

higher (marginally significant) level of DA is observed in

males than in females. However, this can be explained by

analysing the localized significance of the reflection main

effect depicted in Figs 4 and 5 combined with the differ-

ences in DA between sexes in Fig. 6F compared with the

sampling of sparse landmarks used in previous studies.

Focusing on Ercan et al. (2008), the asymmetric distances

found in males and females separately based on 42 land-

marks can be easily overlaid with the significant findings in

Figs 4 and 5. In other words, the DA found in males and

females separately is not contradicted. However, some land-

marks, such as the trichion, nasion and gonion, are located

in regions displaying DA for females only. Furthermore,

some regions, such as the upper brow ridges, temporal-

frontal region, upper cheek and chin, clearly display more

DA for males but are under-sampled or lack any landmark

indication in the study of Ercan et al. (2008). This can bias

the analyses in the direction of finding more DA in females

A B

C D

Fig. 9 Sexual dimorphism for the aspect of sample orientation for the component of symmetry [(A) D-statistic; (B) F-statistic] and asymmetry [(C)

D-statistic; (D) F-statistic].
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than in males. (Note that the under-sampled regions also

overlap with the regions displaying sexual dimorphism in

the symmetry component; Fig. 6E) Therefore, results and

contrasting outcomes in these previous studies are influ-

enced by the choice of landmarks and clearly illustrate the

benefit of a spatially dense investigation. More than a dec-

ade ago, Ferrario et al. (1995) stated that by adding more

landmarks, a better understanding of the facial form could

be obtained. Further, we argue that the sampling of land-

marks should be spatially dense and even in density across

the face (Appendix 2).

A great deal of the work on bilateral symmetry is based

on the geometric morphometric approach outlined in

Mardia et al. (2000). A complete overview would be outside

the scope of the manuscript but some recent studies involv-

ing faces are worth mentioning. In chronological order,

Hennessy et al. (2004) found sex-specific asymmetries in

schizophrenia using five landmarks. The male ‘control’

cohort displayed greater DA compared with the female

‘control’ cohort (significance with a Hoteling’s T2-test).

Schaefer et al. (2006a), as part of an analysis on female

appearance and rated attractiveness, measured DA in 2D

images using 64 facial landmarks. DA was visualized using

TPS (thin plate spline) deformation grids (Mitteroecker &

Gunz, 2009) displaying an elevation of the left eyebrow

ridge and a deviation of the chin point to the right, both of

which are seen in Fig. 6B as well. Nose and mouth deforma-

tion are less comparable. Hammond et al. (2008) analysed

face–brain asymmetry in autism spectrum disorders using

spatially dense pseudo-landmarks. DA was measured in

both a patient and control group of young boys. Klingen-

berg et al. (2010) analysed the effect of prenatal alcohol

exposure on facial asymmetry. A pattern of DA was mea-

sured in 17 landmarks and was visualized onto the com-

plete face by morphing (warping) facial scans based on the

landmark positions and displacements. Doing so allows for

a visual feedback that is of the same spatial density as the

ones shown in Fig. 6B and D. Finally, in Bugaighis et al.

(2010) a similar study was done on children with cleft lip

and ⁄or palate. The patterns of DA seem to differ between

the last three studies mentioned and the one presented in

this work, and comparisons are difficult due to the differ-

ence in age of the study cohorts.

A final comparison of the findings on facial asymmetry

can be made with previous work from the authors (Claes

et al. 2011). There, a spatially dense measure of asymmetry

on the level of the individual under both typical and abnor-

mal growth was provided. To deal with abnormalities in

facial shape, a dysmorphometric-based superimposition,

with an associated extended Procrustes ML-estimator, of

reflected images onto their original counterparts was used

(Claes et al. 2012b). The score encoded for the combined

magnitude of DA and FA in an individual. Typical asymme-

try indices were derived and conform to findings of this

study that the asymmetry in males was more extensive and

of a greater magnitude than in females (though these were

not tested for significance). It is interesting to see that the

summary statistics of the localized asymmetry (from a mixed

population sample, largely East Asian and European) does

reflect an arrangement that is roughly similar to the simple

addition of the patterns of magnitude in DA and FA from

Figs 4 and 5. Finally, Claes et al. (2011), discuss other work

and challenges to technically establish asymmetry measure-

ments using spatially dense shape descriptions.

We predict that the results of this and similar studies will

be relevant for future association studies. The results are

useful in providing the basis for typical facial metrics of

interest, including masculinity and asymmetry (Gangestad &

Thornhill, 2003). For example, let us focus on the non-per-

ceptual metrics defined in Penton-Voak et al. (2001), which

are the most commonly used to measure masculinity and

symmetry based on distances and proportions between

landmarks in the face (Little et al. 2008; Burris et al. 2011).

The landmarks employed to determine facial masculinity are

clearly located in areas found to be different between sexes

(Fig. 6E). Thanks to the results of the spatially dense investiga-

tion, additional areas, differentiating between sexes, can now

be included. Furthermore, when working on the symmetry

component only, facial masculinity can be measured indepen-

dently from asymmetry such that possible relationships are

not confounded. Additionally, the landmarks used to calcu-

late the lack of symmetry are all located in areas mainly

displaying FA instead of DA, except for the landmarks deter-

mining distance D3, which are located in an area displaying

DA, but no FA. Therefore the traditional measurement of

asymmetry will largely measure FA, which is often desired.

Future work, based on the results described herein, could

define new measures of masculinity and asymmetry and

test their discriminatory power. Finally, biological variability

within individuals, based on repeated images, is also of

interest.

Conclusion

The study of sexual dimorphism, which is one of the impor-

tant outcomes of sexual selection, in the human face, is

interesting for many reasons, including a better under-

standing of facial anatomy. The importance of bilateral

symmetry in the face creates the need to study components

of facial shape such as symmetry and asymmetry separately,

which is confirmed by the contrasting but complementary

findings between them. A spatially dense representation of

the complete facial form is clearly beneficial when com-

pared to previous studies and findings. The permutational

statistical methods employed allow large numbers of vari-

ables to be dealt with, which is a common requirement

when working with geometric morphometric data, and the

results may be useful for future investigations, including

association studies. The capacity to objectively decompose

components of symmetry ⁄asymmetry will facilitate greater
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understanding on facial anatomy, developmental processes

and selection pressures.
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Appendix 1

Problem statement: PCA on a mean centered matrix X with

dimensions V · N, with N the number of observations, V the

number of variables and where V � N. Solution: The eigen-

decomposition of the variance-covariance matrix XXt being a V·V
matrix implies that: XXtei¼ liei, where ei and li are an eigenvector

and an eigenvalue of the covariance matrix, respectively. Now

consider the eigen-decomposition of the smaller N · N matrix

XtX: XtXEi ¼ liEi. Multiplying both sides by X and grouping

together in brackets: XXtðXEiÞ ¼ liðXEiÞ one can see that the N

vectors ei¼ XEi are all eigenvectors of the variance-covariance
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matrix XXt with corresponding eigenvalues li and all remaining

eigenvectors XXt have zero eigenvalues due to the incomplete

rank. Hence in the case V is large and N is much smaller, the ei-

genvectors and eigenvalues are best computed using the smaller

XtX matrix. MATLAB functions ‘princomp’ and ‘svd’ (singular value

decomposition) allow you to flag ‘econ’ in order to perform the

more memory-efficient decomposition using XtX instead of XtX.

Appendix 2

Although underlying assumptions are avoided as much as possi-

ble, we should note the following: (i) for the test of differences

in location, observations from both groups are assumed to have

a similar distribution, which is also expected for the traditional

parametric tests (e.g. Hoteling’s T2-test). The main difference is

that ‘similar distributions’ in the non-parametric setting only

implies similar multivariate dispersions (same scale) and not sim-

ilar sample orientation or multivariate normality (Anderson,

2001b). However, it does mean that the significance in sexual

dimorphism of DA should be interpreted with caution, given

the significant difference in levels of FA (which is essentially a

measure of dispersion around DA) between males and females.

(ii) The use of multivariate distances, and, in particular, the

Euclidean distance, is not completely assumption-free. The

Euclidean distance between two landmark configurations is an

unweighted distance in the sense that each landmark contrib-

utes equally to the overall dissimilarity (Hutteger & Mitteroec-

ker, 2011). In other words, an isotropic model is assumed

inherently, which simply explains why the F-ratios obtained

from the NPMANOVA given in Figs 4 and 5 are identical to the

ones obtained from the two-factor ANOVA decomposition under

isotropy. It also explains why the test for population location

differences is identical to the permutational version of Goodall’s

F-test (Goodall, 1991; Bookstein, 1997b). Furthermore, because

of the equal contribution of each landmark to the distances,

the sampling of landmarks across the face should be fair. For

example, if many more landmarks are placed in particular ana-

tomical regions, those regions will influence the distance much

more compared with others and a sort of arbitrary weighting of

facial parts is introduced (Hutteger & Mitteroecker, 2011). In the

case of the quasi-landmarks, in this study the sampling is done

at a constant density as defined in the anthropometric mask. In

other words, they are sampled uniformly and equally spaced at

� 2 mm from each other. This means that bigger areas have

more quasi-landmarks and hence more influence in the multi-

variate dissimilarity, which is rational. The alternative is to use

Mahalanobis distances (Hutteger & Mitteroecker, 2011), as done

in Hoteling’s T2-test for tangent space inference (Dryden & Mar-

dia, 1998). However, this requires a pooled variance-covariance

matrix (with typical assumptions such as strict similar distribu-

tions [see (i)], which are not always appropriate [Parsons et al.

2009)] and is not without problems for permutation testing

(Adams, 2011). From the results on variance-covariance scale

and orientation we can see that for both the patterns of sym-

metry and of asymmetry between males and females the

assumption of ‘similar distributions’ involving equal scale and

orientation does not hold. Furthermore, Hoteling’s T2-test is not

powerful unless a large number of observations are available

(Brombin & Salmaso, 2009). However, the model of isotropy

employed in this work, is considered to be restrictive as well

and an interesting alternative approach, which is not explored

in this work, is the use of nonparametric combination method-

ology to shape analysis (Brombin & Salmaso, 2009; Pesarin &

Salmaso, 2010).

It is appropriate to pay particular attention to the variance-

covariance scale and orientation tests. Traditional and alterna-

tive routines have existed for a long time (Box, 1949; Manly &

Rayner, 1987) and the most commonly known approach in mor-

phometrics is based on the work of Flury using common princi-

pal components (CPC) (Flury, 1988a,b). The elegance of Flury’s

work is the existence of a hierarchy (Phillips & Arnold, 1999;

Steppan et al. 2002) testing whether variance-covariance matri-

ces are (i) ‘equal’ [which can also be tested by matrix correla-

tions (Ackermann & Cheverud, 2000)], (ii) ‘proportional’ (same

orientation, different scale, which is the case for the patterns of

facial FA in this work), (iii) ‘have common PCs’ (both overlap-

ping and different directions, which is the case for the patterns

of facial symmetry in this work) or (iv) ‘unrelated’ [completely

different directions, which would be the case for patterns of

symmetry vs. asymmetry, as they belong to complementary

orthogonal subspaces of Procrustes tangent space (Mardia et al.

2000)]. The disadvantage is the need to construct the variance-

covariance matrices explicitly to compute the CPCs. Flury (1987)

generalized the CPC model and provided the link with the com-

mon space analysis of Krzanowski (1979), which is used in this

work. However, the benefit of working with subspaces directly

is the ability to use PCA instead of CPC for which a simple com-

putational strategy exists when working with more variables

than observations (see Appendix 1). Note that, in the case of

spatially dense quasi-landmarks, strong correlations are

expected (Hutteger & Mitteroecker, 2011) and hence a tech-

nique such as PCA, is able to eliminate all (or most of) the

redundancy in the data. This is seen in the results from the vari-

ance explained in the significant PCs after PA. Only a small num-

ber (11–13) of PCs already explain 85–92% of the total variance

in � 10 000 quasi-landmarks. Also note that the better the con-

sistency of the spatially dense indications, the better the reduc-

tion obtained. Finally, note that subspace representations of

variance-covariance matrices and distances between them have

been used recently to track their developmental trajectories

(Mitteroecker & Bookstein, 2009; Gonzalez et al. 2011). The dif-

ference lies in the definition of the metric used. Instead of sim-

ply summing the squared canonical correlations (cosine of the

principal angles), as in the projection metric employed here, the

logarithm of the canonical correlations is taken in Mitteroecker

& Bookstein (2009). Doing so, changes the relative influence of

smaller vs. larger principal angles in the final distance, which

might be preferable in some contexts.
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